
PD-A32 745 IMPLEMENTING AN AAKRNE ON NBULAU E ML UNPH OD H P NG1 AJ8 HOM1803.
DAAG29-8I-K

005G

UNCLASSIF1ED F/G 9/2 NL111111 ii.monsoonMEIII
mhhMMhmhmMhhl

EhMhhMhEMhMhMl
EMlElMllIIIELIIIIIIIII

11111_!2

MICROCOPY RESOLUTION TEST CHART

"ATIO#AL SUNEAU OF STANOORDS-1963-A

L

I

I

4 +++++

b,I
...

. .

UnclassifiedRADNTUCO:
SECURITY CLASSIFICATION OF THIS PAGE (hoom Des. Sum red)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. RPORTNUMBR 72 GOT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

TITLE(dadSubteft)S. TYPE OP REPORT & PERIOD COVERED

ClImpeetn nAAKre nN Final:
~ Iplmetin a AA ernl n ebua 15 Mar 81 - 31 Oct 82

6. PERFORMING ORG. REPORT NUMBER

47. AUTHOR(e) 11. CONTRACT OR GRANT NUM§ER(o)

Nt Giorgio P. Ingariola DAAG29 P1 K 0059

9-3 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

STemple University
Philadelphia, PA 19122

ICONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office Aug8
Post Office Box 12211 13. NUMBER OFPAGES
Research Triangle Park, NC 27709 A

14. MONITORING AGENCY NAME & AOORESS(if different from Contmflland Office) IS. SECURITY CLASS. (of thie repot)

IUnclassified
ISe. DECL ASSI FIC ATI ON/ DOWN GRADI NO

SCHEDULE

1S. DISTRIUUTION STATEMENT (of Ole Report)

Approved for public release; distribution unlimited. D T

III. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position,)olicy, or decision, unless so designated by other documentation

Q.
0 IS. KEY WORDS (Continue an .win..o aide if neceesary and Identfy by block rnumber)

memory management computers
Iii computer architecture minicomputers

I microprocessors microcomputers
L. NEBULA architecture ADA kernel

real-time svstns
C3 24LARAf~ -iwinsd ieiy~IdmlpI ldnbm

This report reviews the concurrency features of ADA, examines the aspects of the
NEBULA architecture that are more significant for the implementation of
concurrent programs, suggests a method for reducing the tasking mechanisms of
ADA to a few simple kernel operations, and evaluates the NEBULA architecture in
terms of this method and these operations.

VDD I ',o, 103 orno of, I MOV 69 15OSOLETZ UNCLASSIFIED
SECUMlY CLASSIICAT VON OF Y"IS PAE (am" Does swore*

_ I
&- I- '- I I I _ i -

IMPLEMENTING AN ADA KERNEL ON NEDULA

Giorgio P. Ingargiola

Temple University

FINAL REPORT(*)

Accession For

NTIS TRA&I
DTIC TARl
Unar-nounoed• " ~~u s t m el a t i o -

U.S. ARMY RESEARCH OFFICE
CONTRACT DAAG29-81-K-0059 By-i .. Dil i~t!.m

AvaiilebllitY CodesA ail and/or

APPROVED FOR PUBLIC RELEASE. Dist SpeciaL
DISTRID'.UTION UNLIMITED

() The views, opinions, ard/r.r findings contained in this rppnr
are those of the author and should not he construed as an
official Department of the Army position, policy, or decision,
unless so designated bt other documentation.

83 09 20 197a
-

- '
--_- Y- - --

FOREWORD

NEBULA [NEB] and Ada [ADA] are rapidly approaching use. iJk-e-- have
been designed to achieve similar goals, to improve the quality,
timeliness, and cost of the real-time systems used in the Department
of Defense.
NEBULA is intended to provide a common architecture for these systems
in applications that range from microprocessors to mainframes. Ada
is designed, among other things, to ease concurrent programming.

This report

reviews the concurrency features of Ada,

examines the aspects of the NEBULA architecture that are more
significant for the implementation of concurrent programs,

suggests a method for reducing the tasking mechanisms of Ada to a

few simple kernel operations, and

evaluates the NEBULA architecture in terms of this method and
these operations

It is found that NEBULA supports admirably the control structures oil
Ada, but its Memory Mamagement system is not very suitable. Entry
calls and Accept statements are found to require about 40 machine
instructions each. A simple rendez-vous requires the execution of
over 100 instructions.

<i

I -...

•L ~ ' -...... ,-- _...i

TABLE OF CONTENTS

Foreword

Table of Contents ii

List of Illustrations iii

1.0 Introduction

2.0 Concurrency in Ada 3
2.1 The Storage Structure of Ada Programs 7
2.2 Sharing Data across Tasks 15
2.3 More on Concurrency 16

3.0 Overview of NEBULA 18
3.1.0 The Address Spaces of NEBULA 18
3. 1. 1 The Physical Address Space 18
3.1.2 The Virtual Address Space 18
3.1.3 Virtual to Physical Address Translation 19
3.1.4 Memory Management Traps 21
3.1.5 Hardware Support for Replacement Policy 21
3.1.6 Setting up and Modifying Virtual Address Spaces 21
3.1.7 Some special Memory Management Instructions 22
3.2 Procedures in NEBULA 22
3.3 Context Stacks 24
3.4 The Processor Status Word 25
3.5 Controlling the Composite State of a Program 26
3.6 Task Oriented Instructions 27
3.7 The NEBULA model of Tasks and of the Tasking Kernel 28

4.0 A Concurrency Kernel for Ada 35
4.1 Task Control Blocks 35
4.2 Singly Linked Queues and Semaphores 39
4.3 Some basic Task Interactions 44
4.4 Implementing the Ada Kernel on NEBULA 56

Summary 59

Bibliography 61

< . i

LIST OF ILLUSTRATIONS

Figure 2.1: A Block Structured Program
Figure 2.2: Activation Frames
Figure 2.3: Activation Frames on NEBULA
Figure 2.4: Relation between stacks of Master and

Dependent tasks
Figure 3.1: The Virtual Address Space of NEBULA
Figure 3.2: The Physical Address Space of NEBULA
Figure 3.3: Memory Management Maps and Registers
Figure 3.4: SVC Table
Figure 4.1: Template of Task Control Block
Figure 4.2: The Compare and Swap operation
Figure 4.3: Specification of the QUEUE package
Figure 4.4: Body of the QUEUE package
Figure 4.5: Specification of the SEMAPHORE type
Figure 4.6: Implementation of the SEMAPHORE type
Figure 4.7: Some Assumed Program Components
Figure 4.8: Code for Simple Entry Call
Figure 4.9: Code for Simple Accept Statement
Figure 4.10: Code for Conditional Entry Call
Figure 4.11: Code for Timed Entry Call
Figure 4.12: Code for Selective Wait Statement

<iii>

ml ii <

i Paqe1

1.0 INTRODUCTION

In this report we examine the problem of implementing the concurrent
aspects of Ada* in terms of more simple mechanisms and of implementing
these mechanisms in terms of the NEBULA Instruction Set Architecture.
Our aim is to determine the suitability of Ada for implementing the
real-time systems that will execute on NEBULA machines.

The NEBULA Architecture has been introduced to provide an advanced
common Instruction Set Architecture for real-time systems used by the
Department of Defense(DOD). This common architecture is assumed to be
shared by machines with widely divergent performance characteristics,
from Microcomputers, to Minicomputers) to Mainframes. It is intended
to permit object-level shareability of code among all members of this
computer family.

NEBULA is an efficient EDS], modern 'computer' that has features and
instructions expecially designed to support concurrent programming.
Tasks are well defined objects of this architecture with operations
for starting a new task and for performing a context switch. It can
communicate with I/O Controllers by messages.

The Ada Language was developed with the intent of making it the
standard implementation languages for the real-time systems used by
the DOD. It is a modern strongly-typed Language with features that:

1. Support Modularity with Packages, Separate Compilations,
controlled name spaces.

2. Improve Portability with the use of Pragmas, Representation
statements, the predefined System Package, and with standard
mechanisms for interfacing to other languages and to machine code.

3. Permit the direct expression of concurrency by allowing task
definitions and permit intercommunication among tasks by using the
convenient rendez-vous mechanism.

4. handle with the Exception Handling mechanism the errors and the
abnormal contingencies that are so common in real-time
applications

Normally, real-time systems are written in a mixture of high-level
language, assembly language, and a heavy dose of calls to services of
the underlaying operating system. With the advent of Ada, in theory
at least, the whole program can be written in Ada in a manner that is
independent of the computer and of the operating systems being used
(and when dependencies exist, they can be carefully isolated).

Ada is a registered trademark of the U.S. Government, Ada Joint Proqram
Office

iI -

Page 2

In this report we examine the question of how well NEBULA supports the
concurrency features of Ada. We address this question by examining
how the rendez-vous mechanism of Ada can be expressed in terms of more
primitive operations and how well these operations can be implemented
in NEBULA. Our approach is essentially by example. No comparative
study to other architectures in the style of[TAN] is attempted.

This report starts by examing the Tasking Mechanism of Ada.
Particular consideration is given to the storage structure of
Concurrent Programs because tasks in Ada are assumed to have direct
access to the objects visible to them.

The features of the NEBULA Architecture that more directly impact the
implementation of a concurrency kernel are next examined. Questions
of Memory Spaces and of Memory Management are addressed. The
Procedure call mechanism, central to the NEBULA architecture, is
examined.

Control Blocks are specified for Ada Tasks. Simple operations are
defined for implementing the various forms of the rendez-vous
mechanism.
Some of the concurrent features of Ada are implemented in terms of
sequential Ada and of these simple operations. The techniques used
can be directly extended to cover all of concurrent Ada. This study
is independent of the particular features provided by NEBULA.

Finally it is discussed how the concurrency kernel of Ada can be
implemented in NEBULA. The aim here is to achieve a good
understanding of the suitability of NEBULA for this implementation.
Where determined, the number of NEBULA instructions required to carry
out particular operations are given. Since NEBULA has very powerful
instructions that are likely to be time consuming, the figures that
are given may be misleading. Partial conclusions on the suitability
of the Ada/NEBULA combination for implementing real-time systems are
offered.

Page 3

2.0 CONCURRENCY IN ADA

The specification part of an Ada task describes the entries that the
task makes available to its environment. Entries are distinguished
into Simple Entries and Entry Families.

Simple entries have forms like:

entry RESERVE (A: in TRACKINDEX); -- TRACKINDEX is, say, an
-- enumeration type.

Assuming that this entry appears in the task DISKCONTROLLER, another
task can call this entry in a variety of ways.

- with a simple entry call:

DISKDRIVER. RESERVE(X)M; -- X is a variable local to the
-- caller of type TRACK_INDEX.

This call behaves as a procedure call in the sense that when the
call is finally completed, control returns to the statement
following the call. But the mechanism is more complex: if
DISKSERVER is not ready to accept the call, the caller must wait
until DISKDRIVER becomes ready. Only then the RendezVous between
caller and callee takes place.

- with a Conditional Entry Call:

select
DISKSERVER. RESERVE(X),
-- a possibly empty sequence S of statements

else
-- a possibly empty sequence T of statements

end select;
Now if DISKSERVER is not immediately available to accept the
entry call, the call is not made and the sequence T is executed,
after which the conditional entry call statement is completed.
Otherwise, the entry is called and it behaves as a simple entry
call. Then the sequence S is executed. After which the
conditional entry call statement is completed.

- with a timed entry call:

select
DISKSERVER. RESERVE(X).
-- a possibly empty sequence S of statements

or
delay D;
-- a possibly einpty sequece T of stjt,.ments

end select;

Here, if the rendez-vous is promible within D serondq, the c-11
is completed as a simple entry call, the sequenrP S is exrutp'd
and the timed entry call statement is completed. Otherwise the
sequence T is executed and the timed entry call statpmpnt is

- -. .- -

Page 4

completed.

Entry families are like:

entry TRANSFER (TRACKINDEX)(THEOP: in OPERATION
B: in SECTORINDEX;
C: in out SECTOR);

where TRACKINDEX is a discrete type, say, INTEGER range 0 199.
Then this entry family has 200 members. When a call is made to the
family TRANSFER, a specific member must be specified. Apart from
this, calls to family entries are like calls to simple entries. For
example, if I is a variable of type TRACKINDEX, then a simple call to
the Ith entry of TRANSFER is:

DISKSERVER.TRANSFER(I)(X,YZ); -- X,Y,Z are actual parameters
-- of the appropriate types.

Conditional and timed entry calls to family entries are similar to the
corre- sponding type of call to simple entries.

We have seen that a task can make available entries to other tasks.
Then these tasks can call those entries in the manner we have
described. Now we have to show what the original task does when its
entries are called.

The callee task can execute an Accept Statement, something like:

accept TRANSFER(NEXT)(THEOP: in OPERATIONS
B: in SECTOR INDEX;
C: in out SECTOR) do

LOWLEVELDISKPACK. TRANSFER(THEOP, NEXT, B, C);
end TRANSFER;

This statement accepts a call to the member NEXT of the TRANSFER entry
family (NEXT must be an object of type TRACKINDEX). When the callee
executes this statement, it checks to see if there is a call to the
'NEXT' member of the family. If there is not, it waits indeFinitel4
for such a call. When the call arrives (or if the caller was already
there) a rendez-vous is started during which the caller waits for
completion of the call. The TRANSFER operation of LOWLEVELDISKPACK is
performed. Then the rendez-vous is completed, i.e. both the entry
call statement and the accept statement are completed and caller and
callee can continue on their merry ways.

Alternatively the callee can execute a Selective Wait Statement. Here
the callee waits not just ror a call to one of its entries, hut f.r
calls to any of a number of entries. The callee cnn n1so choore to
accept a call only if it comes within a specified time, or onlj i0' no
delay is involved.

Here is an example of a Solective Wait Statement:

select

-- -

Page 5

accept RESERVE(A: in TRACKINDEX) do
-- a sequence P of statements

end RESERVE;
or

when RESERVE'COUNT > 0 =>
accept TRANSFER(NEXT)(THEOP: in OPERATIONS;

B: in SECTORINDEX;
C: in out SECTOR) do

-- a sequence Q of statements
end TRANSFER;
-- a sequence R of statements

end select;

The clause

when RESERVE'COUNT > 0 =>

is called the Guard of the TRANSFER arm (it will be true if there is
no pending call to RESERVE). The RESERVE arm has no explicit guard,
and it is treated as if it had a guard that is always true. When the
Selective Wait statement is executed, the guards of the various arms
are evaluated. If a guard has value true we say that the
corresponding arm is open. Then if there are calls to some oP the
entries of the open arms, one of these calls is accepted (which one we
don't know). In the example above a call to RESERVE has precedence
over calls to TRANSFER because if a RESERVE call were waiting, the
TRANSFER arm would be closed. So if there is a call to RESERVE, it is
accepted, the sequence P is executed, after which both the rendez-vous
and the Selective Wait statement are completed.

If at the time that the Selective Wait statement is executed there is
no pen- ding call on RESERVE, then both the RESERVE and the TRANSFER
arm are open. If a call to the NEXT member of the TRANSFER family is
pending, it is accepted. The sequence 0 is executed, after which the
rendez-vous is completed. Then the R sequence is executed and the
Selective Wait statement is completed. If instead there is no pending
call to the NEXT member of the TRANSFER familu, the callee task waits
for the first call to RESERVE or to the NEXT member of TRANSFER. This
call is then accepted in the manner described above.

Variations of the Selective Wait statement take the form:

select
accept RESERVE

or
when RESERVE'COUNT 0 0 =>

else
-- a sequence U of statements

end select;

Here if a rendez-vous cannot be reached immediately, the sequence U is
exc- cuted and the Selective Wait statement is completed.

- .. a I ...

1L ~ -- - , - -:-

Page 6

select
accept RESERVE

or
when RESERVE'COUNT = 0

or
delay D;
-- a sequence V of statements

end select;

Now if no rendez-vous is possible within D seconds, the V sequence is
executed and the Selective Wait statement is terminated.

Finally, there is the form:

select
accept RESERVE

or
when RESERVE'COUNT 0

or
terminate;

end select;

The terminate alternative, if taken, terminates the execution of the
callee task. The terminate alternative can be taken when no other
alternative can be taken. The exact circumstances in which the
terminate alternative is taken will be described later.

Here are some additional rules and statements dealing with concurrent
tasks.

- Tasks may have different priorities. Assuming that the Ada
program is executing on a single processor, then it is not
possible for a task of higher priority to be ready but not running
while a task of lower prio- rity is running.

- If an exception arises during a rendez-vous and it is not handled
therein, it is propagated in both the caller and the callee tasks.

- The Delay statement

delay D;

where D is a simple exprension of type DURATION [I], suspends
execution of the given task For D seconds.

- Task types are possible as are access tqpe- that refpr Ino ti l,
types. For example:

task type BUFFER is
entry PUT(C: in CHARACTER);

Pa (7

entry GET(C: out CHARACTER);
end BUFFER;

B: BUFFER; -- a task object of type BUFFER the
type TOBUFFER is access BUFFER;-- type of pointers to BUFFER tasks
TB: TO-BUFFER; -- a pointer to a BUFFER task object.

-- initially it is NIL.

TB new BUFFER; -- a BUFFER task is created and asso-
-- ciated to TB.

Ell DURATION is a predefined fixed-point type. DURATION constants
are written as real constants and denote seconds. So 3. 142
means 3 seconds and 142 milliseconds.

2.1 THE STORAGE STRUCTURE OF ADA PROGRAMS

In Figure 2.1 appears a sequential program of a block structured
language. In this program each time that a procedure is invoked an
activation frame (or more simply, just a frame) is allocated on the
stack. In the frame there is information for returning to the caller
and for re-establishing the conditions that existed therein. The
pointer that allows the access to this kind of information is the
called the Dynamic Link. In the frame there is information for
accessing variables declared in procedures enclosing (textually) the
procedure being called. The pointer that allows the access to this
kind of information is called the Static Link. In the frame there is
also space for the local variables and for the temporary variables of
the procedure being called. For example, a simplified form of a frame
of the procedure B declared ir Figure 2.1 is:

1:dynamic link ---
! : -------- I

--- :static link
: ---------- -___ :

:N

--------- _

IM

If the procedure 0 is called and it in turn ca]li P which call. C,

then P, then C, the following calling sequence takes plare

B P --- C --> P ---) C

and the structure of activation frames depicted in Figure 2.2 evolves

! . -' " : - "- I -u4

The computation of the Links takes place as follows:

DYNAMIC LINK:

The dynamic link of the callee is set to the address of the frame of
the caller.

STATIC LINK:

IF the caller and the callee are siblings (i.e. declared in the
same procedure) THEN
the static link of the callee is set to the static link of
the caller

ELSIF the callee is the son of the caller (i.e. declared
immediately within the caller) THEN
the static link of the callee is set to the address of the
frame of the caller

ELSIF the callee is the Ith ancestor of the caller (i. e. Il
means parent, I=2 means parent of parent) THEN
the static link of the callee is set to the address of the
frame determined by following the static link of the caller
(I-I) times

END IF;

The computation of the static and dynamic links is done each time that
a frame is created. The return to the caller is done by following the
dynamic link. Access to variables is done in terms of the static
links. In an activation of a procedure the addresses of the variables
mentioned in the procedure are known at compile time as a pair

<j, d>

where j identifies the frame where the variable is allocated and d
gives the position (displacement) of the variable within the frame.
For example in the program seen above, the only activation of the
procedure B knows its variables N and M as having j equal to 0 (the
displacement will depend on the sizes of the objects and it is not
relevant to us). These same variables are known in all activations of
P as having j equal to 1, and in all activations of C as having j
equal to 2. Notice that the first activation of C 'sees' the first
activation of P; and that the second activation of C 'sees' the
second activation of P but not the first activation of P.

As we are dealing with a block structured language, the various frames
can be allocated on a stack, with consequent simplification of the
policy needed to reclaim the storage associated to these frames. The
fact that the NEBULA Architecture supports Context stacks and the
automatic saving of registers =nd parameters does not substantially
affect the arguments presented above. It just reduces the amount n('
information that needs to be kept on the data stack. For the example
seen in Figure 2.2 the situation becomes the one shown in Figure .3.

P' 9

procedure B is
N : ...
M : ...

procedure P (X: ...) is
1: ...

procedure C is
M:...

begin

P(M);

end C;

begin

C;

end P;

begin

P(N);

end B;

FIGURE 2. 1

MO.-

Page 10

-- > dynamic link :. .

static link

1N

--------------- in k --
,'"* I, st ti l n

-------------- I

-->: dynamic link

..... __..--.t ti.lin

I M.

. .- -, ----------in -- --

:- static link
P -

N

dynamic link

I static link I

C

.. ______lmm

->dynamic link -

1static link
P -- - - - - - - -

--------------- I

* Iq

I--------------I

--------------- I

:dynamic link:-

--- -- 1static link

FIGU)RE 2.2

Page I1I

--- static link

B N

IN
- - - - - - - - - -

stti lin

- - - - - - - - - -

C I

------ 1static link

C: N Q

static link

-----s-atic -link --

FIGURE 1.3

i Paee 12

In Ada storage management is complicated by the presence of dynamic
types, that is of types whose objects may remain in existence after
the frame where they were allocated has been exited, and by the
existence of concurrent tasks.

For dynamic objects we don't actually have to give up the stack
discipline. When a dynamic type is declared, a pool of storage is
allocated on the stack. When an object accessed by the dynamic type

is allocated, space is found for it in the pool of that type. For
example, if we have the declarations:

type NODE;
type LINK is access NODE;
type NODE is record

LEFT, RIGHT: LINK;
VAL: INTEGER;

end record;

at the time that these declarations are processed it is allocated a
pool for say n nodes [1]. Later on, when objects of tupe NODE are
allocated with the new operator, they are allocated in that pool, even
if the allocation takes place in a frame which is a descendent of the
current frame.

The problems posed to the sto;age management system by the existence
of concurrent programs are more serious. These problems are of two
kinds:

1. As concurrent tasks execute in interleaved fashion, each allocates
and deallocates frames as it wants, without concern for the state
of the other. Hence concurrent tasks cannot share the same stack,
each must have its own stack. (In the case of NEBULA, of course,
two stacks are needed by each task. One is the Context stack and
the other is the Data stack). The storage management problem is
then how to allocate storage for stacks, given that stacks grow
and shrink in a fairly impredictable fashion. Hence, either each
stack must receive a 'maximum' size, or a stack must be able to
grow if need be.

2. When a task is declared within another task (the former is said to
depend on the latter and the latter is called the master of the
former all the objects that are visible in the master at this
point are also visible in the dependent task.

Dismissing the first problem by aSSUming that we can allocate stack
segments and possibly expand thpn without pprformance penalty. we can
provide the needed visibility across tasks as shown in Fiqure 2. 4.
There are two fields in each frame where a task is declared, onp to
head the list of tasks being declared (they are siblings), the other
to keep count of the elements in this list. Then at the base of the
stack of a task is a pointer back to the frame where it was declared
in its master, and a pointer field for linking this task to its

Pa e 13

siblings. At compile time each variable is uniquely identified by a

triple

<m, j, d>

where j and d have the same meaning as in block structures languages.
m indicates how many master links must be followed starting from the
current stack before reaching the correct stack (if m is equal to 0,
then the variable is in the current stack). Of course, at run time
the access to the variable denoted by <m, j, d> will be achieved bg
carrying out the actions implied by this triple. First, select
correct stack using m, then select correct frame using j, and final'.
choose correct byte using d.

Note that as long as a dependent task is in existence, its master task
cannot pop the frame where the dependent task was declared, Otherwise
the dependent task would loose its ability to access the variables
that are visible to it. This is the reason why in Ada no frame can be
exited until all its dependent tasks are terminated. A program unit
that is done but cannot exit because of the existence of some
dependent task, is said to be Completed.

Of course, alternative strategies for supporting visibility across the
Master Task/Dependent Task chasm could be followed. For example, at
the base of the stack of the dependent task could have been placed a
table with one entry for each task on which this task is dependent
(directly or indirectly). This entry identifies the frame of the task
where the declaration forcing dependence was made. Then again objects
can be represented by triples <m, j, d>. j and d have the same
meaning as before. m instead identifies the entry of the base table
that must be used.

At this point we have reached an understanding of how storage can be
managed and objects accessed in Ada. We have seen that each task has
its own stack (two stacks in NEBULA), that block-structured visibility
across tasks could be supported, that the existence of dependent tasks
can force the suspension of a task, that dynamic data types need not
complicate the storage management of the individual task. We have
left unresolved the question of where stacks are actually allocated,
and the whole question of what can be done with data objects visible
across tasks.

[I] The value of n is chosen by default by the compiler. However
the programmer could override this default.

-- - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - --a

Page 14

BASE
stack of
master

frame
where stack of
dependent 1 to dependents !<--I BASE dependent
task is ----------------- ----------------- task
declared 1 count 1 pointer to

: parent

pointer to

1 sibling

current
top 1
frame

-- current top
- - -- frame

FIGURE 2.4

- - - - - - - - -- - . - - - - - - - ~ .-- ---- --- 4

Page 15

2.2 SHARING DATA ACROSS TASKS

We have seen that when a task is declared within another task
variables de- clared in the latter are visible to the former. For
example, if we have the following situation:

T:

A: F;
U: : :

V:

where V and V are tasks declared within task T and W is a task
declared within V. Then the variable A of type F declared in T is
visible to the tasks T, U, V, W.

We are all familiar with the problems that may arise when data is
shared among concurrent tasks. What Ada does to deal with these
problems is complex.

Given a task a synchronisation point for this task is when it is
activated, or activates another task, or when it executes an Accept
statement, or a Selective Wait statement, or some form of Entry Call,
or a Delay statement, or an Abort statement, or when the task
terminates. That is, a sunchronization point of a task is any time

when the task invokes some extratask concurrency servicell]. Ada
requires that if a task reads (writes) a scalar or access variable
that is shared, then in the time interval between the synchronisation
points that enclose this access no other task is writing (read or
writing) that variable. Programs where this condition is not |
satisfied are erroneous, i.e. with impre- doctable behavior. 1his I
regulation makes it possible for tasks to keep local copies or shared
scalar and access variables as long as the original is updated (if
necessary) at the end of a synchronisation interval where a local copy
has been written, and a local copy is updated at the beginning of each
synchronisation interval in which it is read before being written.

[13 1 exclude Exception Handling from the Sqnchronisation situations

because exception handling is a sequential programming concept.

--------- ---------------------- - - - -- - - - -- -I-- - - -

Page 16

Ada does not say anything about shared objects that are not of scalar
or access type. Even though Ada does not allow local copies of
objects that are shared if not of scalar or access types, we will
proceed as if what applied to scalar and access objects applied also
to all other objects. This means that for any object A of type F:

1. The read operation on A by any task is a logically indivisible
operation

2. The write operation on A by any task is a logically indivisible
operation

This can be achieved by using a hardware machine architecture where
these operations are implemented by uninterruptible instructions, or
by assuming that in Synchronisation intervals the reader and writers
protocol discussed above will hold.

Going back to our example with the tasks T, U, V, W sharing the object
A, we require that any access to A must be completed before any other
access to it can be started. In the case that A is of some 'simple'
type, the physical operations of access to A are by their nature
atomic. For other types, however, an access to A may be done by an
uninterruptible operation, in which case serialisation of accesses
must be achieved wi4 h synchronisation operations.

2.3 MORE ON CONCURRENCY: NORMAL AND ABNORMAL TASK TERMINATION

The Abort statement has form:
abort taskname_, ,task name-n;

For each of the named tasks, if the task is not already terminated,
abort will:

1. Mark the task as ABNORMAL;

2. Mark all descendants of the given task, both direct and indirect,
as ABNORMAL;

3. For all the tasks mentioned in 1. or 2., if they are suspended in
some queue (i.e. they are delayed, or waiting to start a
rendez-vous) mark them COMPLETED and remove them from the queue
they are waiting in;

4. Mark as TERMINATED all tasks mentioned in 1. or 2. that are not
yet activated;

5. For all tasks mentioned it 1. or 2. but not in 3. or 4., thev
must be marked completed at least by the time that thpo reach a
synchronisation point;

6. For each of the tasks mentioned above which are not terminated, if
all their dependent tasks are terminated, mark them as terminated.

Clearly the Abort statement has a radical effect on the tasks it

Li-....

Page 17

aborts. If task T has just been aborted, by the time it reaches a
synchronisation point it is, if without dependents, terminated.
Notice however that if T is in an infinite loop (something like
K<INFINITE>>: goto INFINITE;), there is no guarantee that T will be
terminated (though it will in any sensible implementation). Any
attempt to call an entry of a completed or terminated task raises the
TASKINGERROR exception in the caller.

Each task T has two attributes: TERMINATED and CALLABLE.

T'TERMINATED iff T is terminated
T'CALLABLE if T is not completed, not terminated, and not

abnormal.

We can now go back to examine the meaning of the TERMINATE alternative
in Selective Wait statements. Assume that a task is waiting in a
Selective Wait statement with an open terminate alternative. Then if
this task has a master which is complete and whose dependent tasks are
all either terminated or waiting in a Selective Wait statement with an
open Terminate alternative, then that master task and all its
dependent tasks are terminated. Note that in this definition it is
not possible for the chosen master to have dependents that are
completed but not terminated. Equally impossible is to have, at the
time that the master task and its dependents are terminated, any entry
call pending on any of their entries.

Page 18

3.0 AN OVERVIEW OF NEBULA

3.1 THE ADDRESS SPACES OF NEBULA

NEBULA is a virtual memory machine. Its virtual to physical address
translation may or not be enabled, under program control. When the
translation is disabled, it is still possible to take advantage of the
protection features that the Memory Management Unit provides, and to
protect differently different areas of physical memory.

3. 1. 1 THE PHYSICAL ADDRESS SPACE -

The NEBULA Architecture supports a 32-bit physical address.
Particular implementations may use smaller physical addresses which
will behave as zero extended to 32 bits. (That is, if the actual
physical address is 26-bit long, it is treated as if extended with

26 27 28 29 30 31
+ -- 4-- -+ -- + -- +--_+

:0 :0 :0 :o 10

The first 2**20 bytes of physical memory form what is called the I/O
SPACE, that is, they are used to address control registers of the I/O
controllers and of the processor itself. The top (largest addresses)
2K bytes of the I/O space are reserved for processor control
registers. (Readers familiar with the PDP-11 Architecture can compare
NEBULA's I/O Space to the PDP-11 I/O Space which is placed in the top
SK bytes of physical memory).

Immediately after the I/O Space, that is, starting at location
lO0000OHex, is physical memory. The first .5K bytes of this physical
memory are taken up by assigned interrupt and trap vectors, or
reserved for use by particular implementations of the NEBULA
Architecture to carry out Initial Program Loads.

At last, starting at location lO0400Hex is the physical memory
available to the programmer. The map of the Physical Address Space is
recapitulated in Figure 3.1.

3.1.2 THE VIRTUAL ADDRESS SPACE -

A Virtual Address in NEBULA is 32-bit wide. The Virtual Address Space
consists of two regions, eath 2**31 byte long, called respectivelu,
User Region and Supervisor Region.

The Supervisor Region is accessible only when the executing cndv is in
Supervisory State.

The User Region is accessible independentlg of the state of the
executing code. The map of the Virtual Address Space is recapitulated

+ , = + 4 ,

Page 19

in Figure 3.2. A task, depending on its state, can hence access the
whole Address Space, or just the User Region.

NEBULA supports multiple Virtual Address Spaces. Each task has its
own Virtual Address Space (of course, the Address Spaces of distinct
tasks could be identical). The Virtual Address Space of distinct
tasks share the same Supervisory Region, but have distinct User
Regions in the sense that each task can have its own mapping from the
User Region of the Virtual Memory to the Physical Memory.

3.1.3 VIRTUAL TO PHYSICAL ADDRESS TRANSLATION -

The translation of virtual addresses in the User Region and in the
Supervisor Region are done independently of each other. In either
case the same method is used. Hence it will be sufficient for us to
consider the case of the User Region.

The User Region is divided into Segments. The number of segments in a
User Region is not fixed, so that different User Regions can have
different numbers of segments. In each implementation of NEBULA at
least 16 segments will be supported.

The size of a segment is not predetermined, in the sense that segments
of different sizes can be defined and a segment could be made as large
as allowed by the underlying Physical Memory.

The translation from the User Region to the Physical Memory is
controlled by a Segment Map accessed from a special register, called
the User Memory Map Pointer (UMMPP) Register. The Segment Map is
preceded by a 32-bit word specifying the number of entries in this
map.

Each entry in the Segment Map consists of two 32-bit words. The first
word has form:

0 1 29 30 31
----------- - ----------- -------

: < ---- Virtual Address Bound -------- > I
------- ------- -- - - - - - - - - - -----------

--0 in User Map, 1 in Supervisor Map
Protection Key-------

and the second has form:

0 1 9 30 31
--- - - - - - - - - - - ------------- ---- +------

Relocation Amount
------- ------- -----------------. ------- ---

j Reserved-------------

LZ' . . ". ° -,.

Page 20

Successive entries in the Map must have increasing virtual address
bounds.

Given a Virtual Address in the User Region, to it is associated at
most one entry in the User Region Map. This entry, if it exists, it
is the first one whose Virtual Address Bound is not less than bits 1
26 of the given virtual address. All entries of a Map must be aligned
on double word boundaries.

The vjlues of the Protection key have the following interpretation:

000 No access is allowed. This mode will be usually used
for swapped out segments

001 Data Read Only
100 Execute only. This mode allows the reading of literals
101 Execute or Data Read
010 Data Read or Data Write
110 Reserved
011 Context only. It is the mode of Context Stacks (see 3.3)
111 Reserved.

The User Memory Map Pointer has form:

0 29 30 31
-- - - -------- -- - - - - - - ---- +--- ---

Physical Address of first Entry of Map 1 1
+- - - - - - - - -- - - - - - ------ .. . ---- +--- ---

Reserved--

Virtual Memory Mode----

The Virtual Memory Mode has the following interpretation. If it has
value:

00 It is as if the machine had no virtual memory, or if you
prefer, the map is the identity map,

11 The entry corresponding to a given virtual address is
determined. The the first 29 bits of the physical address
are obtained by adding (overflow, if any, is discarded) the
first 29 bits of both the virtual address and the relocation
amount of the entry. The last 3 bits of the physical address
are the same as the last 3 bits of the virtual address.
The legality of the access is checked using the Protection
Key.

01 The entry coresponding to a given virtual address is
determined. The corresponding physical address is the same
as the given virtual address. The leqality of the access is
checked using the protection key of the entry.

10 Reserved

LIi- --- e

Page 21

3. 1.4 MEMORY MANAGEMENY TRAPS -

A number of traps are associated to errors that can occur during
accesses to memory.

If the physical address used is not implemented, a trap (vector at
100014Hex)is invoked with as only parameter the guilty address.

The remaining traps are Memory Management Traps, i.e. they are
associated with errors that can arise in the virtual to physical
address translation. All Memory Management Traps share the same
vector (at l00000Hex) and have 4 parameters:

?1 The address that gave origin to the fault
?2 The address of the operator of the instruction that was

executing at the time of the fault
?3 The segment number, if any, associated to the address

(?1 above) causing the fault
?4 The fault code. It is a byte with values:

I Illegal reference to Supervisor Region
2 No segment was found for this address
3 Protection violation
4 Privilege Violatiun

As the reader can see, the information provided by these faults is
bountiful and should allow for graceful recovery From Memory
Management Traps.

3. 1. 5 HARDWARE SUPPORT FOR REPLACEMENT POLICY -

The NEBULA Architecture has no hardware to support the implementation
of any policy for choosing the segments to be removed from main memory
when main memory is full and a segment fault has taken place. In
particular, contrary to most other machines, no Use Bit (set each time
a segment is accessed), or Dirty Bit (set each time a value contained
in a segment is modified) is associated by the Architecture to each
segment. Of course, particular implementations of the Architecture
are free (and likely to) add such bits.

3. 1. 6 SETTING AND MODIFYING VIRTUAL ADDRESS SPACES -

We have seen that the Adress Space currently in use is chararterised
by the data structures shown in Figure 3.3.

The User Map and Supervisor Iap are cr c.ited as ar other da t
structure. When they are fully set up, the,.q are activated by loadinq
the corresponding Map Pointer Register with thesp addresses.

The Supervisor Memory Map Pointer is lihely to remain unchanged
throughout an up-time session of the machine. This is so since the
Supervisor Region is shared by all Address Spaces. The initial

j. - -

Page 22

*loading of the Supervisor Memory Map Register is done by using its
adress in the I/O region.

The User Memory Map Pointer is loaded and saved (together with the
Task Context Pointer that we shall encounter later) using the Load
Task and the Store Task instructions. As tasks take turns in sharing
the processor, changes in the content of the User Memory Map Pointer
are going to be frequent.

3.1.7 SOME SPECIAL MEMORY MANAGEMENT INSTRUCTIONS -

NEBULA has some instructions that are very convenient for manipulating
Virtual Address Spaces.

The Repent instruction is available for modifying an entry of the User
Map of the currently executing task, or an entry of the Supervisor
Map. This instruction can be used, for example, in the following two
cases:

In the case of a segment fault, after the needed segment has been
placed in main memory, we can use the Repent instruction to patch
the corresponding Map entry to reflect the new situation.

The Repent instruction can be used to map a segment of the User
Region of the current task into different areas of physical memory
at different times.

The Map instruction, given the physical address of a Map and a Virtual
Address, it interprets the Virtual Address using the Map and returns
the corresponding segment number and physical address.

3.2 PROCEDURES IN NEBULA

The notion of 'Procedure Call' is ubiquitous in NEBULA. Many contTol
structures that in other architectures have separate meLhanisms are
reinterpreted in NEBULA as procedure calls. In a very real sense one
can say that at all times in NEBULA the executing code has been
invoked with a procedure call.

A procedure in NEBULA is not just a sequence of instructions,
supported by simple instructions for invoking it and returning from
it:

Each activation of a procedure has avcil-ble up to 16 reqix4crs
(the program counter is register 0) that are trpated, with the
exception of register 1, as local variables of the activation
That is, when we call a procedure the registers of the raller are
saved in the 'context stack' together with the Processor Status
Word (PSW), and the called procedure is given essentiallu a nPw
set of registers. The initial content of these registers (with

Page 23

the exception of registers 0 and 1) is undefined. Upon return to
the caller, the content of the callee's registers is lost and the
registers and PSW of the caller are re-established. The nature of
Context Stacks will be dealt with more in detail in section 3.3.
For now it sufficies to know that the machine maintains at one
time two context stacks, the Kernel Context Stack and the User
Context Stack. The former is used when the machine is in Kernel
mode, the latter when the machine is in User mode. 'the same
Kernel stack is used at all times. Instead at different times
different User Context Stacks can be used as they are in
one-to-one correspondence with tasks.

Parameter passing is implicit to the call mechanism. That is, if
we want to call the procedure P with arguments Al, A2, .. I An
(n<=256), the call is effected with the single machine
instruction:

CALL P, A1, A2, .. An
Within this activation of P these parameters are accessed with the
names:

21 "72 ... 7n
These names are local to this activation of P and consequently are
not visible in any procedure called by P. If we want, say ?3 to
be visible in a procedure Q called by P, either we must use ?3 as
a parameter in the call to 0, or we must copy 73 to some area
accessible from 0.

The code of each procedure includes as a prefix a descriptor.
This descriptor will indicate the maximum number of registers
needed by this procedure, whether the procedure expects a variable
or fixed number of parameters, and, if fixed, how many. It alo
indicates if exceptions raised during an activation of the
procedure should be handled by a system wide exception handler or
instead by a handler provided by the user.

Of course 'procedure calls' are used to call procedures. But many
more control mechanisms are interpreted as procedure calls.

Interrupts are interpreted as procedure calls invoked by the hardware
to the appropriate interrupt handler. All interrupt handlers are
treated as kernel mode procedures, hence they use the Kernel Context
Stack.

Traps are also interpreted as procedure calls made by the hardware.
They again use the Kernel Context Stack. The Trap procedure call will
have a number of parameters. Their exact number and nature is
dependent on the trap being considered. A number of traps are deFined
in the NEOULA Architecture. To each trap is associated a trap vector,
i.e. a location pointing to the handler to be invoked.

Supervisory Calls, aqain, are procedure c lls. A :Tpervisoru C,'11
instruction has form:

SVC index,pl, ,pn
The NEBULA Architecture has two special registers with addresses in
the I/O space that are used in the interpretation of this instruction.
These two registers hmve the form:

Page 24

0 15 16 31

I low limit high limit
.--

II Vector Table Address

where the second register has a value pointing to a struture, the SVC
table, of the form shown in Figure 3.4. When the SVC instruction is
executed, a vector is chosen in the SVC Table. This vector is treated
as the physical address of the procedure to be called. The arguments
pl, ... pn are given as parameters to this procedure. The SVC call
does not change the current mode and priority. The vector determined
by the call specifies if the called procedure should or not be
executed in Supervisory State and if with or without privilege.

Finally, also the dispatching of a task takes the form of a procedure
call. The caller task becomes suspended. The dispatched task
continues from the conditions it had when last suspended.

Even though, as indicated above, interrupt handlers, trap handlers,
and tasks are invoked as procedures, usually they do not terminate as
procedures by performing a return instruction. Calls and returns are
not necessarily matched. For example, task A may 'call' task B, which
may 'call' A, etc. without any intervening return operation.

As a final observation we note that NEBULA supports the notion of
procedure call, not that of function call. Function call instructions
would be desirable for the implementation of languages like C and LISP
where procedures are treated as special cases of functions.

3.3 CONTEXT STACKS

In the PDP-11 a register,R6, acts as stack pointer. When a procedure
is called the return address (and the PSW) is pushed into the stack.
Upon return this address (and the PSW) is popped from the stack and
moved to the program counter to continue the execution of the calling
program. This same stack is used to save registers, to pass
parameters, and to allocate the temporary variables of the calling and
called procedures.

Some of the activities that on the PDP-11 are explicitly carried out
by the program, pushing and popping the stack, are instead implicitlq
carried out by the hardware using a Context Stack.
In this Context Stack are implicitly saved return addresses, PSWs,
Registers, and are are implicitly allocated the parameters of calls
The allocation and deallocation of temporary variables is still under
program control and is to be done in a separate Data Stack. For this
Data Stack we need a stack pointer. This can be done by using
Register 1 which, contrary to other registprs is not saved and made
urdefined when a procedure is called.

, ~

Page 25

The NEBULA Architecture provides two registers, The Kernel Context
Pointer (KCP) and the Task Context Pointer (TCP). 7he procedure that
is currently executing will use the Context Stack pointed to by one of
these pointers. It will use TCP if the current procedure has Task
mode. (The mode of a procedure is specified by its descriptor).

Each Context Stack should be implemented as a segment with appropriate
protection key. The Context Pointer for this Context Stack should be
initially set to the address of the first byte past (higher than) the
segment.
The KCP Register should be set only once at start-up time. Then the
same Kernel Context Stack will remain in use across all procedure
calls. Instead different tasks have different Task Context Stacks.
When a task is initiated it is given a Task Context Stack and the TCP
is appropriately loaded. Then each time a new task is dispatched, the
Context Pointer of the dispatching task is saved and the TCP register
is reset to the value saved for the task being dispatched.

3.4 THE PROCESSOR STATUS WORD

The Processor Status Word (PSW) maintains important information about
the current status of the processor and of the executing code. The
principal information, for the purposes of our discussion, is
maintained in the fields:

Kernel/Task Mode: This bit field, if set, states that
the context Stack currently in use is the
Kernel Context Stack; otherwise it is the
Task Context Stack.

Supervisor/User State: This bit field, if set, states that
the current virtual address space consists
of both the User and Supervisor Region;
otherwise it consists of just the User
Region.

Privilege Condition: This bit field, if set, states that
privileged instructions can be executed and
privileged memory segments accessed;
otherwise they cannot.

These bit fields are independently controllable to give all 8 possible
value patterns. They form what we call the Composite State of the
program. We will, in the next session, examine how these bits can be
modified.

Other significant field- in tho FICW are:

Last Mode: Dit field that is set to the value of the
previous Kernel/Task mode.

Priority: A 5-bit 'ield that spccifics the current

| ,.

Page 26

priority of the processor.

Base of Context Stack: Bit field that is set if the current
Context Stack contains only the current
procedure activation.

3.5 CONTROLLING THE COMPOSITE STATE OF A PROGRAM

We have called Composite State of a program the combination of the
values of the Kernel/Task Mode, Supervisor/User State, and Pri.vilege
Condition of the PSW. The Composite State controls the essential
features of the machine that are available to a program: the Context
Stack it uses, the Address space accessible to it, and the legality of
using privileged instructions and segments. In the following ue
examine how transitions among Composite States can take place.

As there is a Load PSW instruction in NEBULA, it is possible to go
from any privileged composite state to any composite state. However,
the more useful transitions do not require the use of the Load P51W
instruction.

As we have seen, all sorts of control mechanisms are reduced in NEIULA
to procedure calls. However, the way the calls are actually made
affects the way that transitions among Composite States take place.

o The Call instruction does not affect the Composite State.

o The CALLU instruction changes only the privilege condition of the
composite state. No matter the current value, it sets the
Privilege Condition to no privilege.

o Supervisory Calls, Interrupts and Traps change the composite state
in a way that is essentially independent of the Composite State at
the beginning of the transition. The Supervisor/User state is set
to bit 0 of the address of the invoked procedure (i.e., procedures
in the User Region can only access the User Reqion; and
procedures in the Supervisor Region can access both the User and
Supervisor region).
The Privilege Condition is set to bit 31 of the address of the
invoked procedure (in the case of SVCs, this value is ORed with
the current privilege condition).
The Kernel/Task Mode is set to Kernel in the case of traps and
interrupts; it is left unchanged in the case of SVCs.
Interrupt calls set the priority to the priority of the
interrupting device. SVCs do not change the priority.

o Task initializations act veril much lil~c 'he Load r.W i?1t'L;c.i -TI

in that the P5W of the task being initiated is fulli, sprcified r
part of the initialization.

1 '-1.

Page 27

0 Task dispatching behaves as a Return instruction, not as Procedure
Call: the conditions existing when the task was suspended are
re-established.

Execution of the Return from Procedure instruction has different
behavior depending on the state of the current activation on the
Context Stack.
If this activation has its Base marked (it is the initial activation
on this Context Stack), on the basis of the PSW field Previous
Kernel/Task Mode, after elimination of the current context, a new
Context Stack is chosen (it might be the same if the Previous and
Current Mode are the same) and its top activation is re-instated.
Consequently its Composite State is adopted.
If this Context does not have its Base marked, it is removed and the
previous one is re-instated. The Kernel/Task Mode is left unchanged.
The Supervisor/User State and the Privilege Condition are reset to the
values they had in the new context.

3.6 TASK ORIENTED INSTRUCTIONS

NEDULA has instructions specially dedicated to task manipulation. But
first, what is a task? According to Dennis and Van Horn [DVH] a task
is:

a locus of control within an instruction sequence.
That abstract entity which moves through the instructions
of a procedure as the procedure is executed by a
processor."

A task has an identity and state supported by the operating system
and/or the hardware. This support allows the interleaving of the
execution of multiple tasks on a single hardware supported execution
sequence.

When we program tasks on NEBULA, to each task we associate a two word
control block of the form

+-------------------------------
* Value of Task Context
Pointer Register

+-------------------------------

* Value for User Map
Register i

+-------------------------------

The address of this block can serve as identifier of the task
associated to that block. Each time the task is activated the first
word of the control block is loaded into the Task Context Poirtnr
Register, and the second word of its control block is loaded into the
User Memory Map Register. Then this task is dispatched using the top
context of its Task Context Stack. As part of this single instruction
the context of the task executinn this instrurtion ir gved in it
Task Context Stack. A separate instruction is used fnr savinn the
current value of the control block of the dispatching task.

Page -1

In other words, for a task to give up the processor and dispatch
another task it needs to execute 3 instructions:

1. The Store Task instruction, which, given the address of a Control
Block, stores there the current values of the Task Context Pointer
Register and of the User Region Memory Map Register.

2. The Load Task instruction, which, given the eddress of a ccntrol
block, obtains from it new values for the Task Context Pointer
Register and for the User Memory Map Register.

3. The Start Task instruction which starts executing the top context
of the Context Stack specified as a parameter of the instruction
(the parameter indicates if to use the Task Context Stack or the
Kernel Context Stack).
A variation of this instruction will precede the above action by
discording on the specified context stack of all contexts up to
and including the first one with its Dase bit set.
In either case a specified exception could be raised in the task
being dispatched.

Another kind of instruction is available for performing the initial
activation of a task. This is the Initiate Task instruction. ihis
instruction has two parameters. The first is the address of the
procedure which is the code of the task being initiated. The second
provides bits 0:15 of the PSW for that task.
A context with its Base bit set is allocated for the task being
activated on the Context Stack specified by bit 0 of the P5W. As part
of this instruction the context of the task performing the instruction
is saved.

3.7 THE NEBULA MODEL OF TASKS AND OF THE TASKINO KERNEL

The NEBULA Architecture supports the basic notion of a kernel, i. e.
of code that supports user tasks and their interactions. At a First
glance the software architecture supported has the form depicted in
Figure 3. 5.
In this architecture each task has:

1. An address space of the form

+-------------- Controlled by User Memory Map.
SUser It is different in different
Region I tasks.

: Supervisor Controlled by 5t~pervi!'or Memory
1 Region 1 Hip. It is the same for ill
+--------------+ tIs ks.

2. A Task Context Stack, whero thE contexts of this ta-k are cavpd.

Page 29

3. A Data Segment, used for the dynamic data structures used by this
task.

4. A Code Segment, used for the code executed by this task.

All of these areas can be determined by examining the hardware control
block of this task.

The Virtual Address Space of distinct tasks share the Supervisor
Region and have distinct User Regions. However it is easy to have two
User Regions sharing the same physical segment(s). It sufficies to

set segments in the memory maps of the two User Regions to point to
the same physical address(es).

No instruction supports directly semaphore operations, or spin-locks,
or other entities used in the synchronisation of tasks. However a
Compare and Swap instruction is available for the implementation of
synchronisation mechanisms.

The thread of control of an executing task can be changed because of
synchronous traps, or of asynchronous interrupts, or of Supervisor
calls.

Supervisor calls do not change the current mode, hence they do not
", change the current Context Stack. They may change the address space to

include the Supervisor Region, and they may change the Privilege
Condition to allow the execution of privileged instrctions.
Supervisor calls do not change the identity of the current task or its
priority, they change what the current task can do, to include actions
that normally are thought of as belonging to the kernel. Though the
identity of a task is not changed by the execution of a Supervisor
Call, some may prefer to think of the changes that take place as the
transmogrification of the given task into a more powerful alter-ego,
into an 'uplifted version of the given task. From the point of view
of the task that executes a Supervisor Call, this call is
undistinguishable from a regular procedure call in the sense that
normally after some action is done, control continues with the
instruction following the Supervisor Call.

Traps change the mode of the executing program. The Kernel/User mode
is set to Kernel and on the Kernel stack is created a context with its
Base bit set. Privilege is not changed. Priority is set to its
maximum value (IF Hexadecimal).
The State will be User or Supervisor depending on the most significant
bit of the procedure invoked by the trap. Again the identity oF the
running task is not changed by a trap.

Interrupts behave just like traps with two differences, the obvious
one of being asynchronous instead of sunchronous, and the fact tfhat
the priority of the procedure called by the interrupt will have itt
priority set to the priority of the interrupting device.

Traps and Interrupts use the K$eriel Context Stack and their actions
are nested.

$, w -

00000000

Virtual Space
User of code in
Region Task State...

0 0 Virtual 'pace

of code in

Supervisory State

Supervisory
Region

Figure 3.
A Virtual Address Space

I 1%',r ',

00000000v

I/0 Space

OOOFF800

Processor Control Registers

Assigned Interrupt and Trap Vectors

00100100 4

Reserved for each NEBULA implementation

00100400 -Y

Guaranteed Physical Memory

OOFFFI -

Potential Physical Memory

Figure 3, z
The Physical Address Space

I -t

Useir l"pp

,,ap Pointers #/ of odgmento

UsierMeoryI Virtual Addrennr Pound

j.a rontojr Relocation Amount j
ISupervisor[

Mp ointer Virtual Addreos Pon
'K relocation Amount

'K. x uperviror I'ap

flelocatIon Amount

V~irtual Addrens Pouind
Eciocation Amount

Fire .
I:emory I'anagement Miapa3 and Reg-isters

LA--~- -

rfi ric 33

SVC table

3'
Vector Table illegal index Vector

Index - Low Limit

Vector 4
Maximum

Figure 3.4

.. - - . _ - -

-q.r]

• - w lt,6C 3§y

7 4,11 7t ;.?J '<

i a

CbM~t""~ P Jr-ie '4J

kC-/Z a

FIGUZ..E. ,...

Page 35

4.0 A CONCURRENCY KERNEL FOR ADA

The first impression upon reading about Ada tasks and their
interactions it is to assume that very complex data structures and
control structures are required for their implementation. After a
while one comes to the realisation that things are not as difficult as
they seem at first.

We now introduce some very limited extensions to what is required f0T
sequential programming in Ada. We show how these extensions can be
used to implement the tasking mechanisms of Ada. Later we will
consider the implementation of these extensions on the NUEULA
Architecture.

All that follows is written under the assumption that all the tasks of
a program share the same address space. Whether this address space is
virtual or not is irrelevant to our discussion. This assumption of a
single address space Ill simplifies the problem of addressing shared
variables and of accessing the actual parameters of entry calls.
Under this assumption addresses mean the same in all tasks. this
assumption limits the protection possible among concurrent tasks and
makes relocation of segments in this single address space more
difficult.

4.1 TASK CONTROL BLOCKS

For each task we allocate 3 areas:

The Data Area: a static area where are allocated all data
structures that exist throughout the life of
the task;

The Context Area:an area used for the context stack of this task

and

The Stack Area: an area used by the normal stack of this task

We do not assume the existence of a separate Code Area for each task.

Instead we assume that a whole Ada program has a single Code Area 12].

When a task T creates a dependent (3) task V, it creates for V a
permanent Hardware Context Block (HTCB) [4) which remains in existence
as long as V can be named in some intertask action [5].
In the NEBULA Architecture this control block contains the Memory Map
Pointer and the Context Pointer.

[.] DifFerent Tasks may still have different nmory maps with
different protection rights. Further, the supervisor/usrr
distiction differentiates between the areas accessible at
different times.

12) We leave unspecifiod the relitionship bctween this notion of'
"AT 2a' and NEbULA's notion of) "Segment".

hi>.......... I

Page 36

Additional information about a task appears in four other Task Control

Blocks:

the Permanent Task Control Block(PTCB). which remains i;, existence

as long as the task is not terminated,

the Static Task Control Block (STCB), whose existence is required
only while the task is activated and not terminated,

the Dynamic Task Control Block (DTCB), of which there may be a

copy in each activation frame of the task, and

The Rendez-vous Task Control Block (RTCB), of which there is a
copy for each Rendez-Vous in which the task partecipates as a
callee.

An example of information maintained in the PTCB is the status of the

task. Examples of information maintained in the STCB are the
indication of un/availability for the task to accept calls on a
particular entry and the count of calls pending on an entry. Examples
of information maintained in the DTCB are means to account for and

access the tasks that are dependent on this activation frame.
Examples of information kept in each RTCB are the priority that the
task had before the rendez-vous, and indications of the entries calls
that can be accepted.

Though the information maintained in the five task control blocks are

different in role and in life expectancy, we will do as if all the
information they contain were actually maintained in a single Task
Control Block (TCB). In Figure 4. 1 appears an Ada package that

describes the information maintained in a TCB. This package makes
appeal to the notion of "queue' which is examined in more detail in
section 4.2.

[3) If within block B we declare task V, then V depends on D. If in
B we declare the access type P to tasks of task type W, then
whenever a task is created through a sequence of actions like:

X: P;

X.all := new W;

the task so allocated is dependent on B.
Then a task V is dependent on a task T if it is dependent on

one of the blocks of the task T.

[4) We call this Control Block "tHrdware" tecause it is directlu
supported by the NEBULA hapdlware in the LOAD TACK and STORE TAEIi
instruct ions.

15) This may be well after V ha!; terminated executior, .nce V can

be named as long as the boc' on Which it is dependnnt i, not

exited.

- - .- ---- -'--- -

Page 37

with QUEUE; use QUEUE;
package TASKCONTROLBLOCKS is

type AREADESCRIPTOR is -- undefined; it is the type of the
-- descriptor of the Context Area, Data

-- Area and Stack Area.
type AT-AREA-DESCRIPTOR is access AREADESCRIPTOR;
type TASKSTATUS is (CALLABLE, COMPLETED, ABORTED, TERMINATED);
type RESULT_CODE is new NATURAL;

-- It describes what happens during a rendez
-- vous. It can take the following values:

-- 0 an exception was raised during
-- rendez-vous
-- 1 the call was successfully completed
-- 2 a delay alternative was taken
-- 2+i a call to the ith entry of this
-- task was accepted and successfully
-- completed.

WITHEXCEPTION: constant RESULTCODE 0;
SUCCESS: constant RESULTCODE " 1i
WITHDELAY: constant RESULTCODE := 2
CALLED_i" constant RESULT CODE := 2+i;
type EXCEPTIONCODE is -- SYSTEM defined integer type.

-- This code represents the exception that
-- took place during a rendez-vous. In the
-- NEBULA architecture this quantity is
-- well defined and retrievable after an
-- exception with the ECODE instruction.

type TCB;
type ATTCB is access TCB;

type TCB is record
MEMORYMAPPOINTER: SYSTEM. ADDRESS
CONTEXTPOINTER: SYSTEM. ADDRESS;
PERMANENT PRIORITY, -- priority permanently associated to task
PREVIOUS PRIORITY, -- priority in previous activation Frame
CURRENTPRIORITY: -- priority in current activation frame

SYSTEM. PRIORITY;

CONTEXT AREAPOINTER,
DATAAREAPOINTER,
STACKAREAPOINTER: ATAREADESCRIPTOR;
MAINENTRY: SYSTEM. ADDRESS;

-- address of where in code area this task

-- starts execution.

STATUS: TASKSTATUS := CALLABLE;

WAITING_LIST: LINK;
-- When this tabk is waiting in a tiuspte it
-- is linked into this queue ht usinri this
-- field

FIGURE 4. 1 (Cont.

_ I_

Page 36

DELAY-LIST:
LINK;

-- When this task is waiting because of a
-- DELAY statement, it waits in the timer
-- queue using this link

SIBLINGLIST: LINK;
-- All the siblings of this task are linked
-- together using this link.

CHILDREN ANCHOR;
-- The anchor of the list of all the
-- dependent tasks.

WHERECALLING: ATANCHOR;
-- The address of the anchor of the list
-- (queue) where this task waits if unable

-- to complete a call.

NUMBEROFCHILDREN: NATURAL = 0;
-- The number of Dependent tasks of this task

NUMBEROFCHILDRENAT TERMINATE: NATURAL := 0;
-- The number of dependent tasks of this task
-- that are waiting at a Selective Wait
-- statement with a Terminate alternative.

RESULTIS: RESULTCODE;
-- It reports what happened in the last

-- rendez-vous of this task. It is used by
-- the task when acting as callee.

RESULTWAS; RESULTCODE;
-- It has exactly the same meaning as
-- RESULTIS but now it is intercded for
-- the caller.

EXCEPTIONIS EXCEPTIONCODE;
-- It indicates to the caller of an entry,

-- if there was an exception, what
-- exception it was.

TASK BEINGCALLED: ATTCB;
ENTRYBEINGCALLED: NATUPAL;

-- It indicates the entry being called in a

-- Selective Wait.

WITHTERMINATEALTERNATIVE: BOOLEAN "= FALSE;
-- True iff this task is waiting at a

-- Selective Wait statement with a
-- Terminate alternative.

WITHDELAYALTERNATIVE: BOOLEAN := FALSE;
-- True iff this task is waiting at a
-- Solective Wait alternative, or at a
-- Timed Entry Call

DELAYCOMPLETED: DOCILEAN : = FALSE;
-- True iff a DeIaq was rerpir.ted, and, if
-- it expires, it can be accepted.

FIGURE 4. 1 (cont.)

-, - - - .- - ...--.-. -.-- ---- -l

MUTEX: SEMAPHORE;

-- It serializes all interactions with this
-- task.

GATE: array (1 .. NO OF ENTRIES) of BOOLEAN
• = (others=. FALSE);

WLIST: array (1 .. NO OF ENTRIES) of ANCHOR;
-- GATE and WLIST control access to the
-- entries of this task. They have one
-- component per entry. The GATE(i) will
-- be true iff a call to the ith entry can

be accepted. WLIST(i) is the anchor
-- of the list where callers to ith entry
-- can wait.

end record;
end TASKCONTROLBLOCKSi

FIGURE 4.1

I7:

Page 40

4.2 SINGLY LINKED QUEUES AND SEMAPHORES

In this Section we implement queues and semaphores using:

The sequential facilities of Ada,

an uninterruptible procedure COMPARE-AND-SWAP that we know to be
supported at the machine level in NEBULA by a single instruction,
and

three procedures, GIVE-UP, GIVE-UP-WITH-SUDSTITUTE and
READY-ENQUEUE, defined in the package KERNEL-INTERFACE and
discussed in Section 4.4.

In Figure 4.2 appears the definition of a generic function

COMPARE-AND-SWAP that can be realised in NEBULA as a single
uninterruptible machine instruction. In this definition we use a
non-Ada feature. The generic type ELEM is said to be instantiatable

with any scalar or access type. As this corresponds to none of the
generic formal types of Ada, we have used the notation

(K<:>>)
for itl]. Now that we have the generic function COMPARE-AND-SWAP we

are in position to implement singly linked queues as the package
presented in Figures 4.3 and 4.4. In this package two LNQUEUE

operations are defined. The only difference between them is that in
one it is returned the indication of whether the queue was or not
empty at the time that the operation is called. Similarly, there are
two versions of the DEGUEUE operation. The more complex version

determines if the queue was or not empty at the time tIat the

operation was called.

The ENQUEUE and DEQUEUE operations are extremely rapid. Implemented
as an inline procedure the ENQUEUE operation almost always can be
completed in 5 machine instructions. DEQUEUE almost alwags will
require also only 5 machine instructions. [The probability that two

tasks execute ENGUEUE and DEQUEUE operations on the same queue at the
same time is very low]

Although these operations on queues are implemented without using an

explicit synchronisation mechanism, they are safe even when invoked by
concurrent tasks. In the cases where the instructions of different
operations become interleaved, the overall effect of the different
operations remains the same as if they had been executed in strict
sequence.

In Ada tasks that call concurrently an entry are scheduled in strict
FIFO fashion. Instead, tasks that are in the ready queue are executed
on the basis of their prioritites.

[I] Ada gives a special status to Fcalar ti'pes and to acro's types
in that objects of these typos can be efficienthi shared.
However, this distinction is lost when one gets to thp qrnprir
formal types.

4 ,fi --ll - --

Page 41

The singly linked queues considered above are excellent for supportinq

FIFO scheduling, but are not directly usable for scheduling tasks on
the basis of their priorities. For the case of the ready queue a
multi-level priority queue is more appropriate.

The ENQUEUE operation fur multilevel queues is rapid because it
involves an indexing operation on an array of queues followed by a
simple ENQUEUE operation. It requires 7 instructions. The DEOUEUE
operation for multilevel queues is more time consuming because it must
first determine the queue of highest priority that is not empty. We
estimate that this operation on the average is equivalent to 5 simple
DEQUEUE operations, that is, it requires 25 instructions. In the case
of semaphores, as they are not directly defined by the Ada language,
there are uncertainties as to the way they should be scheduled, if

with a FIFO discipline, or with a priority discipline. At first sight
it would seem that semaphores should have priority scheduling. But if
semaphores are used exclusively to implement critical regions that are
very brief, then the FIFO discipline becomes adequate. Since our use

of semaphores involves critical regions that last at most a few tens
of machine instructions, the FIFO discipline can be adopted and the
simple implementation shown in Figures 4.5 and 4.6 can be used.

In this implementation of semaphores we have assumed the existence of
the function LINK-TO-TCB which, given the address of the WAITING-LIST
field of a task, determines the address of the TCB of that task. This
function, in any reasonable architecture, is trivial to implement. It
is hence assumed without any further discussion. With the name SELF
we mean a variable of type TO-TCB pointing to the Task Control Block
of the task executing the code where SELF appears. We assume that

SELF is defined in the package KERNEL-INTERFACE. It is assumed to be

read-only.

If we examine the implementation of the P and V operations of
semaphores, we see that the execution of a P operation involves almost
always only 6 machine instructions, and that the execution of a V
operation involves almost always only 11 machine instructions.
Further, these operations in most cases are executed without using ang
privilege or any special priority. [Our only use of semaphores is to
implement very brief critical regions. Hence the probability of two
tasks accessing the same semaphore at the same time is low]

I _ - I -".

* F

Page 42

generic
type ELEM is (<ZK); -- as discussed in the text, this is not a

-- legal generic type parameter in Ada.
function COMPAREANDSWAP(THENEW: in ELEM;

SHARED: in out ELEM;
COPY: in out ELEM) is

B: BOOLEAN;

begin
B "= (SHARED = COPY);
if B then

SHARED = THENEW
else

COPY SHARED;
end if;
return B;

end COMPARE ANDSWAP

FIGURE 4.2

package QUEUE is

type LINK;
type LINK is access LINK -- This seems legal in Ada
type ANCHOR is

record
FRONT, BACK: LINK " null,

end record;
type ATANCHOR is access ANCHOR;

procedure ENQUEUE(A: in out LINK; B: in LINK);
procedure ENQUEUE(A: in out LINK; B: in LINK;

NOTEMPTY: out BOOLEAN);
procedure DEQUEUE(A: in out LINK; B: out LINK);
procedure DEQUEUE(A: in out LINK; B: out LINK;

NOTEMPTY: out BOOLEAN);

end QUEUE;

FIGURE 4.3

Page 43

with COMPARE ANDSWAP;
package body QUEUE is

function CMPS is new COMPAREANDSWAP(LINK);
procedure ENGUEUE(A: in out ANCHOR; B: in LINK) is

T: LINK " A. FRONT;
L: BOOLEAN;

begin
D. al 1 nullj
loop

L " CMPS(B, A.FRONT, T);
exit when L;

end loop;
T.all • B;

end ENGUEUE;

-- The other version of ENQUEUE is essentially the same: it just
-- returns in the third parameter the value of L.

procedure DEGUEUE(A: in out ANCHOR; B: out LINK) is
V: LINK;
L: DOOLEAN;

begin
B = A. BACK;
while B /= null loop

V = B.all;
L = CMPS(V, A.BACK, T);
exit when L;

end loop;
end DEQUEUE;

-- The other version of DEGUEUE is essentially the same: it just
-- returns in the third parameter the value of L.

end QUEUE;

FIGURE 4.4

with QUEUE;
package SEMAPHOREPACK is

type SEMAPHORE is limited private;
procedure P(S: in out SEMAPHORE);
procedure V(S: in out SEMAPHORE);

private
type SEMAPHORE is QUEUE. ANC'-OR;

end SEMAPHOREPACK;

FIGURE 4. 5

p 9

Page 44

with LINK TOTC3, KERNELINTERFACE;
use QUEUED KERNELINTERFACE;
package body SEMAPHORE2..ACK is

procedure P(S: in out SEMIAPHORE) is
NOTEMPTY: BOOLEAN : ~ TRUE;

be g in
ENGUEUE (S. SELF. WAITINGLIST, NOTE.MPTY);
if NOTEMPTY then

GIVEUP;
end if;

end P;

procedure V(S: in out SEMAPHORE) is
NOTEMPTY: BOO0LEAN : ~ TRUE;
X: ATTC3;

Y: LINK;
begin

DEGUEUE(S, Y); -- Dequeue Self
DEQUEUE(S, Y, NOT_-EMPTY); -- Dequeue a waiting task, if any
if NOTEMPTY then

X := LINKTOTC3(Y);
if X.CURRENTPRIORITY > SELF. CURRENTPRIORITY then

GIVE UP WITHSUBSTITUTE(X);
else

READYENQUEUE(X);
end if;

end ifi
end V;

end SEMAPHOREPACK;

FIGURE 4.6

Page 45

4.3 SOME BASIC TASK INTERACTIONS

In Figure 4.7 are the specifications oF some packages and procedures
that we will use in implementing some of the basic rendez-vous
mechanisms of Ada. In addition we will assume available schemas For
generating code in correspondence to the phrases described below.

The phrases
PREPAREPARAMETERLIST

and
COPY_1ACKPARAMETERLIST

indicate respectively the actions taking place:
- when the parameters of an entry_call are readied, and
- when, after the call is completed, the 'out' and 'in out'

parameters are copied back to the caller.
The PREPAREPARAMETER LIST and COPYBACKPARAMETERLIST are peT'formed
by the task acting as caller in the rendez-vous.

The phrases
GETPARMS

and
PUTPARMS

indicate respectively the actions taking place:
- when the parameter list prepared by the caller is readied for the

callee, and
- when this list is readied back for the caller.

The GETPARMS and PUTPARMS actions are performed by the task acting
as callee in the rendez-vous.

What PREPAREPARAMETERLIST, GETPARMS, PUTPARMS, and
COPYBACKPARAMETERLIST actually are dependends very much on what
the parameters are as to type, number and mode. Under the assumptions
we have made about address spaces, no significant concurrency issue
is involved in these operations, and we will not dwell further on
them.

In Figure 4.8 appears the code corresponding to the simple entry
call:

T.e(....

In Figure 4.9 appears the code corresponding to the Accept statement:

accept e(...) do
-- a sequence of statements S

end ei

In Figure 4.10 appears the code corresponding to the Conditional
Entry Call Statement:

select
T. e(...
-- a spquence of statements St

else
-- a sequence of statements S2

end zclect;

&whm&

FPage 46

In Figure 4. 11 appears the code corresponding to the Timed Entry Call
Statement:

select
T.e(...)
-- a sequence of statements S1

or
delay D;
-- a sequence of statements 62

end select;

In Figure 4. 12 appears the code corresponding to the Selective Wait
Statement without Delay Alternative, or Else Alternative, or
Terminate Alternative:

select
when gl => accept el(...) do

-- a sequence of statements Si
end el;
-- a sequence of statements S1'

or

or
when gN => accept eN(...) do

-- a sequence of statements SN
end eN;
-- a sequence of statements SN'

end select;

The cases of the Selective Wait Statements with Delau, or Else, or
Terminate Alternative are not considered as they do not add
substantially to our understanding of the rendez-vous mechanism or of
its implementation.

The code we show for the cases we consider is fairly lonq but of onltj
limited complexity. A substantial portion of the apparent complexity
is due to the need to check on possible requests to abort the given
task and to the need to propagate exceptions arising during
rendez-vous in both the caller and the cailee.
A Simple Entry Call that is without parameters and that finds the

callee waiting requires:

- 13 instructions, and

- a P operation (at least 6 instructions)

- a V operation (at least 11 instructions)

- an ENOUEUE operation (,i least 5 insLructions), lnd

a OIVEUPWITiSUBSTITUTE operation.

That is, some 32 instructions plus the time required to carrU otit t!io
CIVE-UP--WITH-SUBSTITUTE operation. If the callae tah is not t(,(' nn,

Page 47

it will take 34 instructions plus a GIVE-UP operation.
Similarly we can estimate that an Accept Statement that is without
parameters and that finds a caller waiting requires 50 instructions.
Otherwise it requires 77 instructions and a GIVE-UP operation. Hence
in the best of circumstances a rendez-vous requires 84 instructions
plus a GIVE-UP operation. All this code is executed without the need
to turn off interrupts.

As the reader may have noticed, our implementation of the rendez-vous
mechanism does not strive for efficiency, just for expositorg
simplicity. Hence our estimates are upper bounds.

I _ -i2 . _

Page 40E

task DELAYER is

entry DELAY(T: ATTCB; D: DURATION);
entry CANCEL(T: ATTCB);

end DELAYER;

procedure SPREAD ADORT(T: AT TCB);

task TERMINATOR is

entry TERMINATE(T: AT_TCB);

-- When task T is terminated all area associated with T are
-- reclaimed by the system. Of course, TERMINATE will be
-- also applied to each of the tasks dependent on T.

end TERMINATOR;

package KERNELINTERFACE is

SELF: constant ATTCB;

procedure GIVE_UP;

procedure GIVEUPWITHSUBSTITUTE(X: ATTCD)i

procedure READYENQUEUE(X: ATTCD);

end KERNELINTERFACE;

FIGURE 4.7

Ima

Page 49

if SELF. STATUS = ABORTED then
TERMINATE(SELF);

elsif T.STATUS /= CALLABLE then
raise TASKINGERROR;

end if;
P(T. MUTEX);
ENQUEUE(T. WLIST(e).FRONT, SELF)i
SELF. TASK-BEING CALLED T;
SELF. ENTRY BEINGCALLED e;
if not T.GATE(e) then

V(T. MUTEX);
PREPARE PARAMETERLIST;
GIVEUPi

else
T.OATE

.= (others => FALSE);
V(T. MUTEX);

PREPARE PARAMETERLIST;
GIVEUPWITHSUBSTITUTE(T);

end if;
if SELF. STATUS = ABORTED then

TERMINATE(SELF);

end if
if SELF. RESULTWAS = WITHEXCEPTION then

raise SELF. EXCEPTION_IS,
end if;
COPY_BACKPARAMETERS;

FIGURE 4.8

Simple Entry Call: T e(.)i

Pa q P 50

dec lare
U: ATTCO.
WASEMPTY: BOO0LEAN .- FALSE;
PRIORITYLIFT: SYSTEM. PRIORITY;
EXCEPCODE: EXCEPTIONCODE :EXCEPTIONCODE'LAST;

beg in
loop

if SELF. STATUS =ABORTED then TERMINATE(SELF); end if;
P(SELF. MUTEX);
DEQUEUE(SELF. WLIST(e). BACK. U, WASEMPTY);
exit when not WASEMPTY;
SELF.GATE(e) := TRUE;
V(SELF. MUTEX);
GIVEUP;

end loop;
if U. WITHDELAYALTERNATIVE then

U.WITH DELAYALTERNATIVE :FALSE;-- TEST and SET instruction
V(SELF. MUTEX);
DELAYER. CANCEL(U);

else
V(SELF. MUTEX);

end if;

FIGURE 4. 9 (cont.)

Simple Accept Statement: accept e(. . .. do S end e;

Page 51

SELF. PREVIOUSPRIORITY SELF. CURRENTPRIORITY;
PRIORITYLIFT " U. CURRENTPRIORITY - SELF. CURRENTPRIORITY;
begin

if PRIORITY LIFT > 0 then
CHANGE_PRIORITY(SELF, PRIORITYLIFT);

end if;
GETPARMS;
S
PUTPARMS;
U. RESULTIS ' SUCCESS;

exception
others EXCEPCODE ECODE;

U. RESULT IS WITHEXCEPTION;
U. EXCEPTIONIS = EXCEP_CODE;

end;
3ELF. CURRENTPRIORITY " SELF. PREVIOUS PRIORITY;
if PRIORITYLIFT -> 0 then

CHANGEPRIORITY(SELF, -PRIORITYLIFT);
GIVEUPWITHSUBSTITUTE(U);

else
READY ENQUEUE(U);

end if;
if SELF. STATUS = ABORTED then

TERMINATE(SELF);
end ifi
if EXCEPCODE /= EXCEPTIONCODE'LAST then

raise EXCEPCODE;
end if;

end;

FIGURE 4. 9

Simple Accept statement: accept e(...) do S end e;

- -• |

Page 52

if SELF. STATUS = ABORTED then
TERMINATE(SELF);

elsif T.STATUS /= CALLABLE then
raise TASKINGERROR;

end iF;
P(T. MUTEX);
if not T.GATE(e) then

V(T. MUTEX);
$2;

else
ENGUEUE(T. WLIST(e).FRONT, SELF);
T.GATE "= (others > FALSE);
T.ENTRY_BEINGCALLED CALLED e;
V(T. MUTEX);
SELF. TASKBEINGCALLED = T;
SELF. ENTRY BEINGCALLED = e
PREPAREPARAMETERLIST
GIVEUPWITHSUDSTITUTE(T)
if SELF. STATUS = ABORTED then

TERMINATE(SELF);

end if;
if SELF. RESULTWAS = WITHEXCEPTION then

raise SELF. EXCEPTIONIS;
end if;
COPYBACKPARAMETERS;

Sl;
end if;

FIGURE 4. 10
Conditional Entry Call: select

T.e(...) SI;
else

S2;
end select;

..--

Page 53

if SEL. STATUS = ABORTED then
TERMINATE(SELF);

elsif T.STATUS /= CALLABLE then
raise TASKINGERROR;

end if;
P(T. MUTEX),
ENQUEUE(T. WLIST(e).FRONT, SELF);
SELF. TASK BEINGCALLED "T
SELF.ENTRYBEINGCALLED : CALLED ei
if not T.GATE(e) then

SELF. WITHDELAYALTERNATIVE TRUE;
DELAYER.DELAY(SELF, D); -- this action must be rapid
V(T. MUTEX);
GIVEUP;

else
T.GATE = (others FALSE);
T.ENTRYBEINGCALLED : CALLED e;
V(T. MUTEX);
PREPAREPARAMETER LIST;
GIVEUPWITHSUBSTITUTE(T);

end if;
if SELF. STATUS = ABORTED then

TERMINATE(SELF);
end if;
if SELF. DELAYCOMPLETED then

SELF. DELAY COMPLETED : FALSE;
SELF. WITH_DELAY ALTERNATIVE : FALSE;

else
if SELF. RESULT IS = WITH EXCEPTION then

raise SELF. EXCEPTION_IS;
else

COPY_BACK-_PARAMETERS;
S;

end if;
end if;

FIGURE 4.11

Timed Entry Call: select
T.e(...); SI;

else
delay(D); S2;

end select;

*

flaqe 54

declare
U: ATTCB,
WAS EMPTY: BOO0LEAN .- FALSE;
PRIORITYLIFT: SYSTEM.PRIORITY;
EXCEP CODE: EXCEPTIONCODE := EXCEPTION CODE'LAST;
THE_-ALTERNATIVE: INTEGER range 0 . . N : = 0;
PSEUDOGATE: array'(1 . . NO_-OF_-ENTRIES) of BO00LEAN

- (others => FALSE);
MAPPING: array (1 . . N) of INTEGER

- (el, e2, .. , eN);
MAPPING_1: array (I NO_-OF_-ENTRIES) of inte!)er

- -- values are 0 or the position whert,
c- alled in the Select Statement

COUNT: INTEGER :0;

b e gin
if SELF. STATUS =ABORTED then

TERMINATE(SELF);
end if;
if gi then COUNT :COUNT + 1;PSEUDO_.GATE(MAPPING(1)) :TRUE;end if;

..... similar code for g2p g31 . .,

if gN then COUNT :COUNT + 1;PSEUDOQ9ATE(MAPPING(N)) :TRUE; end if;
if COUNT = 0 then

* raise PROGRAMERROR;
end if;
P(SELF. MUTEX);
for I in 1 . . N loop

if PSEUDOGATE(MAPPING(I)) then
DEGUEUE(SELF. WLIST(I). BACK, U, WASEMPTY);
if not WASEMPTY then

THEALTERNATIVE I
exit;

end if;
end if;

end loop;
if THEALTERNATIVE =0 then

SELF. GATE :PSEUDOGATE;

V(SELF. MUTEX);
GIVEUP;
if SELF. STATUS =ABORTED then

TERMINATE(SELF);
end if;
P(SELF. MUTEX);
DEOUEUE(SELF. WLIST(SELF. THEENTRYBEINGCALLED). DACK. U);
THE_-ALTERNATIVE := MAPPING I(SELF. THEENTRYBEING CALLED)i

end if;
if U. WITHDELAYALTERNATIVE then

U. WITHDELAY ALTERNATIVE := FALSE; -- TEST anti CET
V(SELF. MUTEX);
DELAYER. CANCEL;

else
V(SELF. MUTEX);

end if;
FIGURE 4. 12 (Cont.

_74

Page 55

SELF. PREVIOUS_ PRIORITY SELF. CURRENT PRIORITYi
PRIORITY LIFT U. CURRENTPRIORITY - SELF. CURRENT PRIORITY
begin

if PRIORITYLIFT > 0 then CHANGE_PRIORITY(SELF, PRIORITY LIFT); end if;
case THEALTERNATIVE is
when 1 => GETPARMS1; Si; PUTPARMS_1;

when N => GET-PARMS_N; SN; PUTPARMSN;
end case;
U. RESULTIS := SUCCESS;

exception
others => EXCEPCODE .= ECODE;

U. RESULTWAS WITHEXCEPTION;
U. EXCEPTIONIS EXCEP_CODE;

end;
SELF. CURRENTPRIORITY SELF. PREVIOUSPRIORITY;
if PRIORITYLIFT 0 then

CHANGE_PRIORITY(SELF, -PRIORITYLIFT);
GIVEUPWITHSUBSTITUTE(U);

else
READYENGUEUE(U);

end if;
if SVF. STATUS = ABORTED then

TERMINATE(SELF);
end if;
if EXCEPCODE /= EXCEPTIONCODE'LAST then raise EXCEP_CODE; end if;
case THE ALTERNATIVE is
when 1 > Si'

when N => SN'
end case;

end;

FIGURE 4.12

Selective Wait Statement without ELSE, DELAY, or TERMINATE
select
when gl => accept el(...) do S1 end el; S1'

or

or
when gN => accept eN(...) do SN end eN; SN'

end select;

Page 56

4.4 IMPLEMENTING THE ADA KERNEL ON NEBULA

Our discussion of the concurrency kernel of Ada assumes the
availability of a few kernel services. The implementation of these
services on NEBULA is straightforward, as it has features that trulu
simplify the solution of concurrent programming problcms.

Examples of NEBULA support are:

o The treatment of Supervisor requests and of task dispatching calls
as procedure calls. Consequently it is possible to use the
parameter passing mechanism of procedure calls when doing these
operations. This simplifies the communication of information
between a task and the kernel and between any two tasks.

o The SVC instruction allows a rapid, safe access to the supervisor
space. The procedure invoked by the SVC may be privileged and so
it can perform privileged instructions to act on tasks or to
change the running task's priority. This procedure can also
access the control blocks of all tasks if, as logical, they appear
in the supervisor space.

o The switch from one task to another is extremely rapid, just the
sequence STORE-TASK, LOAD-TASK, START-TASK (possibly this sequence
is preceded by an SVC and followed by a RET instruction)

o It is possible to start a task and to raise an exception in it
with a single operation.

o It is possible to clear the context stack of a task at the same
time that it invokes another task.

o It is possible for the kernel to check with a single instruction
on the legality of a pointer passed to it.

In general, the procedure mechanism of NEBULA is successful and the
overall structure of the machine simplifies considerably the
implementation of control structures and, in particular, the
manipulation of tasks.

The memory management facilities of NEBULA, instead, leave much to be
desired.

In [SDW] are given reasons for NEBULA's memory management structure.
It is explained that the NEBULA architecture will be implemented in
both micros and in mainframes. The smaller machines will not allow,
it is stated, the use of a two-level (segments over pages) virtual to
physical address mapping because of its complexitq and cost. A
one-level map using pages is excluded because the use of either small
pages or of large pages is unsatisfactory (small pages, because they
require large page tables; large pages, because they lead to
inefficient utilization of physical memory).

Because of these reasons the Authors chose thp oreiinis.tion th,4t lite

.2T7f

Page 57

have described in Chapter 2. This organisation uses two separate
Segment Maps, one for the User mode and the other for the Supervisor
mode. In a Segment Map a Segment Descriptor does not uniquely define
the size of a segment, nor does indicate exactly the addresses mapped
onto that segment. In order to determine this information it is
necessary to examine the Segment Descriptor that precedes the given
one. For example, if we are given Segment descriptors with bounds bO,
bl, b2, .. then each segment will hold the following virtual
addresses:

Segment 0 0 =.. <-= bO
Segment 1 bOC .. <= bl
Segment 2 bl(.. <= b2

This means that if we need to increase the size of the Oth Segment by
some amount d then:

o Either we add d to the bound of the Oth segment and leave the

other segment descriptors unchanged, or

o We increase all bounds by d.

In the first case the 1st segment becomes reduced by the same amount d
that the Oth segment was increased by. In the second case all segment
descriptors need to be changed. In either case a non-local effect
takes place in correspondence to what should be a local change. Of
course, as indicated in [INT), we could insert a 'slack' segment
descriptor following the descriptor of each segment that we may want
to modify in size. For example, if we know that we may want to change
the size of segment 0, we may place following it a segment whose
descriptor forbids all accesses and has a bound of bO' (bO < bO').
Then all changes on the size of segment 0 that do not make it bigger
than bO' are allowed and are local. Of course this solution is not
desirable because it requires extra segment descriptors.

The virtual to physical address translation in NEBULA is not simple
and requires the use of associative techniques. This limits the
number of segments possible even in the larger implementations of
NEBULA.

Given these problems, it is hard to prefer the segmentation schema of
NEBULA over more traditional segmentation methods [SIT].

As we described in Chapter 1, it is necessary to be able to map a
portion of a master task address space into a dependent task address
space. This is required to allow the dependent task to access
directly the objects that are declared in the master and are visible
to the dependent. In addition, when two tasks act as caller and
callee in a rendez-vous, parameters maq be sent in either or both
directions.

To accomodate these requirements there is no simple mechanism in
NEBULA or, for that matter, in anU other architecture we know of-

. . . .

Page 58

1. It is possible to use totally distinct address spaces in distinct
tasks. But the the access to shared objects becomes too slow
because each access must be mediated by a supervisory procedure.

2. It is possible to set up a form of controlled space sharing
between tasks by copying certain segment descriptors of the
Segment Map of the parent task into the Segment Map of the
dependent task. This requires some set up when the dependent task
is activated. More serious is the fact that it requires a
substantial number of segments. In addition it does not help at
all with the problem of parameter passing between tasks during
rendez-vous.

3. One can adopt the solution that we have been using in this
Chapter. This solution uses a single virtual address space for
all the tasks of a program. This solution reduces substantially
the protection possible between concurrent tasks. It also
requires a substantial number of segments, if we intend to use
efficiently physical memory. Its only advantage is execution
speed.

Of these three approaches, probably the third is the most efficient.
But it uses the Memory Management of NEBULA in the way that is least
appropriate for it, almost as a paged memory. In any case, the
conclusion that NEBULA's Memory Management does not support
conveniently Ada is warranted.

Our estimate on the number of instructions that it takes to perform
the kernel operations are:

5 instructions for GIVE-UP-WITH-SUBSTITUTE

7 instructions for READY-ENQUEUE, and

30 instructions for GIVE-UP. [We need to perform a READY-DEQUEUE
followed by a GIVE-UP-WITH-SUBSTITUTE]

It follows that in the best of circumstances a simple Entry Call will
require 40instructions and a simple Accept statement will require some
50 instructions. The fastest rendez-vous possible requires 114
instructions. This, as stated earlier, is in the case that no attempt
is made to optimize the code. But it remains to be seen how much
optimization is actually feasible.

ILL-

Page 59

5.0 SUMMARY

In this report we have examined how well the NEBULA architecture
supports the concurrency features of Ada with the ultimate aim of
determining the suitability of using the NEBULA Architecture to
execute real-time Ada programs.

We have reviewed the concurrency aspects of Ada. We have scrutinized
in particular the storage structure of executing Ada programs. We
have found that the Ada policy of allowing task declarations within
tasks, and of supporting block-structured visibility rules,
substantially complicates addressing within a program. Storage
management is equally complex because a Cactus Stack structure is
required.

In evaluating the ease of implementing a concurrency kernel for Ada on
a machine, two aspects need to be examined above all:

the facilities provided to support context switches from one task
to another or from one task to the supervisor, and

the structure of the available Virtual Address Spaces.

We have reviewed the NEBULA architecture from these two points of
view.

NEBULA has a number of novel features intended to simplify procedure
calls and context switches. Context Stacks simplify considerably the
preparation required to perform a procedure call, and procedure calls
are used as the basic control structure. Supervisor calls,
Interrupts, traps are all interpreted as procedure calls. The context
switch from a task to another can be accomplished within a maximum of
5 instructions. A global Context Stack, the Kernel Context Stack, is
available during interrupt and trap handling. At all other times
system services, just like user code, use Task Context Stacks.
NEBULA supports a one level segmented Virtual Address schema. The
size of a segment is variable up to the size of the whole physical
memory. Two Segment Maps are used to translate from virtual to
physical addresses: the User and Supervisor Maps. The User Map is
associated to the individual task, the Supervisor Map is the same for
all tasks. The Supervisor Map is usable only when in Supervisor mode.

We have then examined the implementation of the concurrent mechanisms
of Ada in terms of its sequential features and of a basic set of
operations, of a concurrency kernel. Queues and semaphores were
easily implemented in terms of these operations and then used in turn
in the implementation of various rendez-vous mechanisms. This study
was done in a fashion independent of the underlying architecture.
Only later the use of NEBULA was considered.

The control structures of NEBULA were found extremely supportive of
the Ada concurrency mechanisms E NEBULA would be equally supportive of
other concurrent programming languages or, for that matter, of machine
language real-time programming).

,* Instead no truly satisfactory way was found to utilize the Virtual
Address spaces of NEBULA to support the controlled memory sharing

StL _ -~7 ;.

Page 6(0

policy of Ada.

The execution of a Simple Entry call was found to require 40
instructions when immediately successful. The execution of an Accept
statement, when immediately successful, required 50 instructions. The
minimum cumulative (caller + callee) number of instructions required
by a rendez-vous is 114 instructions. These figures were obtained
without any attempt at optimisation. But it seems unlikely that any
local optimization will substantially improve on this figure.
Various features of NEBULA that do not appear in other architectures
were helpful. In the implementation of these basic rendez-vous
mechanisms NEBULA saves some instructions with respect to the VAX
because of its more convenient task oriented instructions.

To know that the simplest rendez-vous mechanism requires 40
instructions is a useful piece of information. But of itself does not
help determine the usability of Ada to implement real-time systems orn
NEBULA (or, for that matter, on any other machine). Though the
research being reported did not consider in sufficient depth this
question, a number of observations follow from our study:

1. Our estimates on the number of instructions required to carry out
rendez-vous mechanisms depend very little on NEBULA. NEBULA is
more helpful in this implementation than other architectures. The
complexity of the general Ada rendez-vous mechanism is at the root
of the problem.

2. One of the aims of Ada was to allow the use of concurrent tasks in
all the situations where it would be conceptual] dvantageous to
do so. It appears that this will result in a s- tial penalty
in the efficiency of the resulting program.

3. If a semaphore is implemented directly in NEBULA assembly
language, the execution of a P operation requires the execution of
6 instructions. If the same semaphore is implemented in Ada, the
execution of a P operation requires the execution of over 100
instructions.
It would appear that:

either compilers must be developed that are capable of pretty
fancy optimizations, or

in applications where the real time constraints are
particularly stringent the careful use of packages written in
low level language will still be required.

A.

P'age 611

BIBLIOGRAPHY

(ADA) Department of Defence: Reference Manual for the
Ada* Programming Language
ANSI/MIL-STD-1815 A January 1923

Dietz, Szewerenko: Architectural Efficiency Measures:
An Overview of three Studies
Computer, April 1979, 26-33

EINT) Intermetrics: NEBULA as a Target for Ada
Report to B~attelle Columbus Laboratories
Delivery Order No. 1698

[DVHJ Dennis, VanHorn: Programmed Semantics for
Mul tiprogrammed computations
Comm. of ACM, 3:143-155 (1966)

LNEI MIL-STD-18613B Military Standard:
NEBULA Instruction Set Architecture

[SDWJ Szewerenko, Dietz, Ward: NEBULA, a New Architecture and its
Relationship to Computer hardware
Computer, February 1961, 35-41

[SIT] Sites.Richard: Operating Systems and Computer Architecture
in: Introduction to Computer Architecture
(H. S. Stone) SRA, 1980

(TAN) Tanenbaum,A. : Implications of Structured Programming
for Machine Architecture
Comm. of ACM.21:237-24b (1978)

ILL________ _________

DATE,

FILMED

kA

